

Aim of the Present Work

•The purpose of our work during the summer months of 2010 was to produce a radioactive beam of ³⁷K with \geq 99% purity.

• Once produced, the next step of the experiment is to measure the half-life of ³⁷K with great precision.

• Goal is to reduce the error in τ (³⁷K) to 0.03 %.

Radioactive Isotope Production

Inverse kinematics:

- Heavy projectiles (heavy ion beams)
- Light targets (p, d, He)
- Forward-directed products

Useful nuclear reactions:

- Charge-exchange
- Fusion-evaporation
- Projectile fragmentation

Factors contributing to isotopic rates:

- Beam intensity (Φ)
- Target thickness (D)
- Reaction cross section (σ)
- Transmission efficiency (ε)

Production rate:

 $R = \Phi \cdot D \cdot \sigma \cdot \varepsilon$

Theory and Planning

Theoretical calculations were performed using the NSCL program LISE++.

This program helps to select the best reaction combination and possible beam energy. It generates information such as, production rates, identities of possible contaminants and plots of what to expect in true data.

Experimental Details

Reaction: ³⁸Ar (p,2n) ³⁷K @ 25 MeV/u ³⁸Ar (p,2n) ³⁷K @ 29 MeV/u ³⁸Ar (p,2n) ³⁷K @ 29 MeV/u with Al degrader **Apparatus**: MARS spectrometer.

Focal plane Detector: Silicon Strip detector.

Production of Short-Lived ³⁷K Heather Stephens (Rose-Hulman Institute of Technology), Dr. Dan Melconian and Dr. Praveen Shidling of The Cyclotron Institute at Texas A&M University

Data Collection

(1) For ³⁷K production, a ³⁸Ar beam of 25 MeV/u from K500 cyclotron was bombarded on a proton gas target (2 atmospheres pressure).

(2) MARS spectrometer was used to separate ³⁷K from the primary beam.

(3) Settings of the MARS spectrometer were calculated using the MARSinator program.

(4) Separated products were detected at the focal plane using the strip detector.

(5) MARS settings were optimized for maximum production rate of ³⁷K.

(6)Last slit of the MARS was optimized for purity of ${}^{37}K$. (7) Step 1 to 6 was repeated for 29 MeV/u with and without the initial degrader.

Data Analysis

Determining which isotopes we had produced and the amounts of each were our first goals. Identification was performed by multiplying the relative channel numbers by the energy calibration for the detector electronics of 0.295MeV/channel.

Additionally, it was important to record the production rate of each isotope to calculate the purity of the ³⁷K in beam.

	25MeV/	u Results						29Me	29MeV/u with Degrader Results Data (MeV) LISE++ (MeV) Id 2406.64 710.84 702.90 Id 2365.44 697.81 704.372 Id 2231.31 658.24 666.321 Id		
Channel	Data (MeV)	LISE++ (MeV)	Identity					Channel	Data (MeV)	LISE++ (MeV)	Identity
2535.45	747.96	755.04	³⁷ K		29MeV/	u Results		2406.64	710.84	702.90	³⁷ K
2318.22	683.88	689.32	³⁵ Ar	Channel	Data (MeV)	LISE++ (MeV)	Identity	2365.44	697.81	704.372	³⁵ Ar
2183.84	644.23	652.09	³³ Cl	3017.55	890.18	888.18	³⁷ K	2231.31	658.24	666.321	³³ Cl
2072.75	611.46	614.85	³¹ S	2811.73	829.46	833.65	³⁵ Ar	2130.55	628.51	628.276	³¹ S
1948.47	574.80	577.62	²⁹ P	2676.00	789.42	788.61	³³ Cl	2009.01	592.66	590.233	29 P
1819.99	536.90	540.35	²⁷ Si	2548.08	751.68	743.58	³¹ S	1892.38	558 25	552 142	27 Si
1683.20	496.55	503.10	²⁵ AI	2402.59	708.76	698.55	²⁹ P	1748.66	515.86	514 855	²⁵ AI
1565.79	461.91	465.86	²³ Mg	2236.59	659.79	653.46	²⁷ Si	1618.08	477.33	476.030	²³ Ma
1447.73	427.08	428.64	²¹ Na	2080.35	613.70	608.41	²⁵ AI	1498.99	442 20	437 933	²¹ Na
1328.40	391.88	391.41	¹⁹ Ne	1936.81	571.36	563.37	²³ Ma	1363.48	402.23	399.956	19 N e
1172.52	345.89	354.29	¹⁷ F	1810.85	534.20	518.35	²¹ Na	1226.33	361 77	362.022	176
1055.64	311.41	317.18	¹⁵ O	1564 78	461 61	473.32	¹⁹ Ne	1000.95	224.46	224 101	150
958.72	282.82	280.08	¹³ N	1303.26	384 46	428 42	17F	091.50	290.57	324.101	13N
834.93	246.31	242.97	¹¹ C		004.40	720.72		901.09	209.07	200.107	¹ "N
								007.09	202.93	240.209	

Future Steps

Once the isotopes were identified it became critical to look ahead to the next step in the team's project. To measure the half-life of ³⁷K our plan is to implant the isotope in a Mylar tape and count the amount of beta decay that occurs over a given period of time.

Knowing how much and exactly what contamination we have will affect the precision of this measurement.

*N. Severijns, et al., Phys. Rev. C 78, 055501 (2008)

Placement in the Mylar tape can be used as another source of filtering contaminants. SRIM, a program used to calculate the stopping energies of istopes was a great resource in planning. Knowing the beam must travel through approximately 50.8um Kapton foil, 0.3mm plastic scintillator, and stop somewhere in 70.3um Mylar tape all worked in these calculations.

<u>29MeV/</u>	u: Pla	aceme	nt in N	/lylar (u	<u>ım)</u>	
Aluminum Thickness	³⁷ K	³⁵ Ar	33CI	31S	29P	27Si
172.11	5	2.14	16.17	28.68	43.66	59.16
163.12	10	8.69	21.37	34.49	50.56	66.67
153.45	15	13.79	27.31	41.33	58.4	75.47
146.42	20	18.13	32.24	47.05	64.43	
136.56	25	24.63	39.77	55.20	73.66	
131.54	30	28.39	43.75	59.83		
123.35	35	34.38	50.39	67.70		
117.37	40	39.30	56.04	73.79		
111.52	45	44.82	61.92			
105.79	50	50.20	68.02			
100.94	55	54.97	73.35			
98.37	60	57.83				
90.13	65	67.15				

The team concluded for the highest production rate with the least contamination, an initial projectile beam energy of 29MeV/u with no degrader yields the best results. With 29MeV/u we were able to obtain a production

1756 counts/nC rate of and purity of 98.93 ± 0.025 %.

Continuing into the next step this energy appears to maintain the best production rate and is easier to filter to higher purity during the half-life measurement.

Stopping Energies

29MeV/u: Placement in Mylar (um)									
Plexiglas Thickness	³⁷ K	³⁵ Ar	³³ CI	³¹ S	²⁹ P	²⁷ Si			
294.71	5	1.18	41.43	81.10					
278.88	10	15.41	55.28						
261.89	15	30.57	70.09						
249.56	20	41.56	81.04						
232.31	25	56.52							
223.53	30	64.27							
209.23	35	76.90							
198.79	40								
188.59	45								
178.62	50								
170.18	55								
165.71	60								
151.38	65								

Conclusion

Acknowledgements

would like to thank Dr. Melconian and Dr. Shidling especially for their patience and guidance throughout the project.

Additionally, thanks goes to the NSF and DOE and Texas A&M University's Cyclotron Institute for providing me with the funding and opportunity for research.